The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to describe such flows.However,this equation is nonlinear and very difficult to derive explicit exact analytical solutions.Generally,people can only derive approximate solutions with numerical methods.Recently,an advanced separating variables method which can derive exact analytical solutions easier is developed by Academician CAI Ruixian(the method of separating variables with addition).It is assumed that the unknown variable may be indicated as the sum of one-dimensional functions rather than the product in the common method of separating variables.Such method is used to solve the radial permeable power rate flow unsteady nonlinear equations on account of making the process simple.Four concise(no special functions and infinite series) exact analytical solutions is derived with the new method about this flow to develop the theory of non-Newtonian permeable fluid,which are exponential solution,two-dimensional function with time and radius,logarithmic solution,and double logarithmic solution,respectively.In addition,the method of separating variables with addition is developed and applied instead of the conventional multiplication one.It is proven to be promising and encouraging by the deducing.The solutions yielded will be valuable to the theory of the permeable power rate flow and can be used as standard solutions to check numerical methods and their differencing schemes,grid generation ways,etc.They also can be used to verify the accuracy,convergency and stability of the numerical solutions and to develop the numerical computational approaches.
Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is obtained in this paper.In other cases the temperature would vary monotonously along geometric coordinates as time goes by.There have been very few open reports of explicit unsteady multidimensional exact analytical solutions published in literature.Besides its irreplaceable theoretical value,the analytical solution can also serve as standard solution to check numerical calculation,and therefore promote the development of numerical method of computational heat transfer.In addition,some new special methods have been given originally and deserved further attention.