Ni34.1 Fe27.9B18 Si18 Nb2 coating was deposited on mild steel substrate using high power laser cladding followed by laser remelting process. The laser processing was conducted by the powder feeding method using low purity materials without shielding box. To learn the surface amorphous matrix coating forming mechanism, the coating without remelting process was also studied. The phases and microstructures were analyzed by X-ray diffraction (XRD), scanning- and transmission-electron microscopy( SEM, TEM). The microhardness and corrosion resistance property of the coating were also measured. The results of SEM, XRD and TEM analysis show that the remelted coating has an amorphous matrix layer embedded with some crystals due to high cooling rate during remelting process. The crystals phases are identified as Fe2 B phase, γ (Fe, Ni ) phase and α- Fe phase. No oxidation phases are found in the coating surface. Hardness profiles reveal microhardness more than 1 100 HVo.5 over the full depth of the amorphous matrix layer, while the unremtled coating and the substrate show relatively lower hardness than the remelted layer. Corrosion resistance tests exhibit that the remelted coating is nobler than the unremelted coating and the substrate material.
The microhardness distribution of the diode laser epitaxially deposited IN718 alloy coating was investigated. The Laves concentration in different regions of the coating was measured by binarization processing. The strengthening phase of the coating was characterized by transmission electron microscopy (TEM). The results showed that the microhardness increased along the depth of the coating. Part of Laves dissolved into austenitic matrix during the successive laser deposition, A little amount of strengthening phase was precipitated in the bottom region of the coating. It was attributed to the heat effect from the thermal cycle of successive deposition on the microstructure in the bottom region of the epitaxially deposited coating.
High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classification Society: Grade B (CCS-B). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS), Vickers hardness tester and corrosion resistance tester were employed to characterize microstructures and evaluate properties of this coating. According to the results of SEM, XRD and TEM, the cladding coating consisted of nanocrystalline embedded in amorphous phase. EDS data indicated that Nb segregated in the amorphous matrix. The results of hardness test revealed that the hardness of the top layer was higher than that of the inner layer of the coating. The coating exhibited excellent corrosion resistance in a 3.5% NaCl solution.