BACKGROUND: The oncogenesis of hepatocellular carcinoma(HCC) is not clear. The current methods of the pertinent studies are not precise and sensitive. The present study was to use liver cancer cell line to explore the bio-compatibility and cytotoxicity of ternary quantum dots(QDs) probe and to evaluate the possible application of QDs in HCC.METHODS: CuInS_2-ZnS-AFP fluorescence probe was designed and synthesized to label the liver cancer cell HepG 2. The cytotoxicity of CuInS_2-ZnS-AFP probe was evaluated by MTT experiments and flow cytometry. RESULTS: The labeling experiments indicated that CuInS_2-ZnS QDs conjugated with AFP antibody could enter HepG 2 cells effectively and emit intensive yellow fluorescence by ultraviolet excitation without changing cellular morphology. Toxicity tests suggested that the cytotoxicity of CuInS_2-ZnS-AFP probe was significantly lower than that of CdT e-ZnS-AFP probe(t test, F=0.8, T=-69.326, P〈0.001). For CuInS_2-ZnS-AFP probe, timeeffect relationship was presented in intermediate concentration(〉20%) groups(P〈0.05) and dose-effect relationship was presented in almost all of the groups(P〈0.05). CONCLUSION: CuInS_2-ZnS-AFP QDs probe had better biocompatibility and lower cytotoxicity compared with CdT e-ZnS-AFP probe, and could be used for imaging the living cells in vitro.
A wafer-scale colloidal monolayer consisting of SiO2 spheres is fabricated by a method combining spin coating and thermal treatment for the first time. Moreover, a new cellular automaton model describing the self-assembly process of the colloidal monolayer is introduced. Rather than simulate molecular self-assembly to establish the most energetically favored position, we reconstruct the self-assembly of the colloidal monolayer by adjusting several simple transition rules of a cellular automaton. This model captures the main self-assembly characteristics of SiO2 spheres, including experimental processing time, morphology, and some statistics. It possesses the advantage of less calculation and higher efficiency, paving a new way to simulate a mesoscopic system.
The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots (QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its comer. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.
A novel nontoxic, magnetic, and luminescent nanoprobe is prepared by using complex nanoparticles, which are composed of Fe304 nanoparticles and Mn-doped ZnS quantum dots (QDs). The nanocomposite probe can provide visible optical and magnetic resonance images simultaneously. Compared with the previously toxic cadmium and mercury based QDs, the superiority of the Mn-doped ZnS QDs is little virulence. The structure and the properties of the particles are characterized by energy dispersive X-ray analysis spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and vibrating sample magnetometer.