We provide a general dynamical approach for the quantum Zeno and anti-Zeno effects in an open quantum system under repeated non-demolition measurements. In our approach the repeated measurements are described by a general dynamical model without the wave function collapse postulation. Based on that model, we further study both the short-time and long-time evolutions of the open quantum system under repeated non-demolition measurements, and derive the measurement-modified decay rates of the excited state. In the cases with frequent ideal measurements at zero-temperature, we re-obtain the same decay rate as that from the wave function collapse postulation (Nature, 2000, 405: 546). The correction to the ideal decay rate is also obtained under the non-ideal measurements. Especially, we find that the quantum Zeno and anti-Zeno effects are possibly enhanced by the non-ideal natures of measurements. For the open system under measurements with arbitrary period, we generally derive the rate equation for the long-time evolution for the cases with arbitrary temperature and noise spectrum, and show that in the long-time evolution the noise spectrum is effectively tuned by the repeated measurements. Our approach is also able to describe the quantum Zeno and anti-Zeno effects given by the phase modulation pulses, as well as the relevant quantum control schemes.
We present a fully quantum solution to the Gibbs paradox (GP) with an illustration based on a gedanken experiment with two particles trapped in an infinite potential well. The well is divided into two cells by a solid wall, which could be removed for mixing the particles. For the initial thermal state with correct two-particle wavefunction according to their quantum statistics, the exact calculations show the entropy changes are the same for boson, fermion and non-identical particles. With the observation that the initial unmixed state of identical particles in the conventional presentations actually is not of a thermal equilibrium, our analysis reveals the quantum origin of the paradox, and confirms Jaynes' observation that entropy increase in Gibbs mixing is only due to the including more observables. To further show up the subtle role of the quantum mechanism in the GP, we study the different finite size effect on the entropy change and show the work performed in the mixing process is different for various types of particles.