A systematic study has been performed to investigate the flow and thermal patterns of vertical rotating Thomas Swan MOCVD reactor at low pressure,using 2-D dynamic modeling.By varying and calculating the several important process parameters of the reactor,the optimized conditions of the uniform distributions of velocity and temperature profiles in steady state have been obtained.Then,time-dependent models with the step response perturbation of the total gas rate can help identify the visual transient behavior inside the reactor and analyze the mechanism of delay time,relaxation oscillation and pulsative oscillation.These results are beneficial to the process parameter optimization and geometrical configuration design of the MOCVD reactor.
ZHONG ShuQuan REN XiaoMin HUANG YongQing WANG Qi HUANG Hui
We present a series of studies to solve the spin-weighted spheroidal wave equation by using the method of supersymmetric quantum mechanics. We first obtain the first four terms of super-potential of the spin-weighted spheroidal wave equation in the case of s : 1. These results may help summarize the general form for the n-th term of the super-potential, which is proved to be correct by means of induction. Then we compute the eigen-values and the eigenfunctions for the ground state. Finally, the shape-invariance property is proved and the eigen-values and eigen-functions for excited states are obtained. All the results may be of significance for studying the electromagnetic radiation processes near rotating black holes and computing the radiation reaction in curved space-time.
By using the super-symmetric quantum mechanics (SUSYQM) method, this paper obtains the analytical solutions for the spin-weighted spheroidal wave equation in the case of s = 2. Based on the derived W0 to W4 the general form for the n-th-order super-potential is summarized and is proved correct by mathematical induction. Hence the ground eigenvalue problem is completely solved. Particularly, the novel solutions of the excited state are investigated according to the shape-invariance property.
The spin-weighted spheroidal equation in the case of s = 1 is studied. By transforming the independent variables, we make it take the Schr6dinger-like form. This Schr6dinger-like equation is very interesting in itself. We investigate it by using super-symmetric quantum mechanics and obtain the ground eigenvalue and eigenfunction, which are consistent with the results previously obtained.
The integrable properties of the spheroidal equations are investigated. The shape-invariance property is proved to be retained for the spheroidal equations, for which the recurrence relations are obtained. This is the extension of the recurrence relation of the Legendre polynomials.
The spin-weighted spheroidal equation in the case of s = 1/2 is thoroughly studied by using the perturbation method from the supersymmetric quantum mechanics. The first-five terms of the superpotential in the series of parameter β are given. The general form for the n-th term of the superpotential is also obtained, which could also be derived from the previous terms Wk, k 〈 n. From these results, it is easy to obtain the ground eigenfunction of the equation. Furthermore, the shape-invariance property in the series of parameter β is investigated and is proven to be kept. This nice property guarantees that the excited eigenfunctions in the series form can be obtained from the ground eigenfunction by using the method from the supersymmetric quantum mechanics. We show the perturbation method in supersymmetric quantum mechanics could completely solve the spin-weight spheroidal wave equations in the series form of the small parameter β.
We investigate the dynamics of two qubits coupled with a quantum oscillator by using the adiabatic approximation method. We take account of the interaction between the qubits and show how the entanglement is affected by the interaction parameter. The most interesting result is that we can prolong the entanglement time or improve the entanglement degree by using an appropriate interaction parameter. As the generation and preservation of entanglement of qubits are crucial for quantum information processing, our research will be useful.
The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.
Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.