As known to all that Henon chaotic system is not appropriate for generating the key-streams because it has non-uniformly distributed output signal, a new key-stream generation scheme based on Henon chaotic system is presented. In order to get the key-streams with good statistics and long enough cycle length, a specific method for dividing the enon attractor into numerous non-overlapping sub-regions, and a new one-to-one mapping strategy between the divided sub-regions and elements of dynamically generated matrix consisting of O's and l's are proposed. Experimental results demonstrate that the generated key-streams are with long enough cycle length and very sensitive to the initial values and secret keys. For example, key-streams with the cycle length of 10^32 can easily be obtained. Moreover, even if the fluctuation to the initial values or secret keys is as small as 10^- 14 uncorrelated key-streams will be generated. Experimental results also demonstrate that the generated key-streams have good randomness and they can pass all the standard criteria specified in FIPS PUB 140^-2 with no less than 98%.
In this paper, we describe an improved cooperative two-way quantum communication scheme that works in a forward-and-backward fashion. In this scheme, partial entanglement analysis based on five-qubit entangled Brown state allows for the simultaneous exchange of arbitrary unknown states between Alice and Bob (with the help of trusted Charlie). Security is guaranteed because opposing unknown states are transmitted by performing the suitable recovery operations in a deterministic way or, in the case of irregularities, no results are generated. The current two-way quantum communication scheme can also be extended to transmit arbitrary unknown states. This is done in a probabilistic way by using two-way quantum teleportation based on the generalized Brown-like state.
A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed format or in a JPEG compressed format.Then the proposed detection method was analyzed and simulated for all the cases of the two tampering scenarios.The tampered region is detected by computing the averaged sum of absolute difference(ASAD) images between the examined image and a resaved JPEG compressed image at different quality factors.The experimental results show the advantages of the proposed method:capability of detecting small and/or multiple tampered regions,simple computation,and hence fast speed in processing.