The evolution of metal species during sludge composting in aerobic reactor has been widely investigated,but little is known in large scale.In this study,the transformations of heavy metals speciation(Zn,Cu,Pb and Cd)in the process of sludge composting were studied in a bunker.Physico-chemical parameters,such as pH,moisture content(MC),organic matter(OM),humic acids(HA)and fulvic acids(FA)contents,were determined to evaluate their impacts on the redistribution of Zn,Cu,Pb and Cd in sludge compost.During the composting process,the contents of Cu,Pb,Zn and Cd in oxidizable and residual forms increased,whereas the contents of the exchangeable Cu,Pb,Zn and Cd decreased,with a slight increase in the total heavy metal contents.The contents of Cu,Zn and Cd in carbonate form and the reducible Cu,Zn and Pb falled;however,the content of Pb in carbonate formed and the reducible Cd increased.The results indicated that heavy metals(Zn,Cu,Pb and Cd)in sewage sludge could be passivated during composting process.The heavy metals speciation in the compost correlated with the physico-chemical parameters.In addition,linear regression analysis indicated that the content of mobile Pb could predict the total content of Pb.The contents of the residue fraction for Pb,Zn and Cd were decreased,but those for Ni and Cr were increased;the Cu residue fraction was almost constant.The contents of the total mobile fractions(including fractions 1-4)for Zn and Pb were significantly increased,but the increase of those for Cu and Ni were not so remarkable.There were significant degrees of correlation between heavy metal fractions and changes of some selected parameters(for example,pH,composting temperature and OM content).Only the content of the total mobile fractions for Cu could be predictable from its total content.For the prediction of the total mobile fractions of Zn,Ni,Cd and Cr,the R2 value was significantly increased by the inclusion of other variables such as pH,temperature and OM content.