The increasing demand of water in the country highlights the need to introduce low-input and water saving technologies for agricultural sustainability and crop production,mainly in semi-arid region.A study was conducted to minimize deep percolation losses from the furrow bottom under two different irrigation treatments viz.(1)furrow bottom with plastic sheet(T1)and(2)furrow bottom without plastic Sheet(T0).The physical and chemical analyses of soil profile were taken at a depth of 0-80 cm before and after crop harvesting.The dry density of soil slightly increased(0.01 g/cm^(3))under both treatments,while soil pH decreased under T1.The average yield was 8332 kg/hm^(2) and 7575 kg/hm^(2),with 21.56 m^(3) and 31.09 m^(3) total volume of irrigation water applied under T1and T0,respectively.The saving percentages of water under treatments were 52.22% and 31.00% under T1 and T0 respectively as compared to the saving of water under traditional irrigation practice.Overall,better performance,in terms of crop production and water saving,was obtained with use of plastic sheet integrated with bottom of furrows.Hence,it is suggested that the furrow irrigation method with plastic sheet may be used to preventing moisture and minimize deep percolation losses from furrow bottom.
Muhammad Sohail MemonKausar AliAltaf Ali SiyalJun GuoShamim Ara MemonShakeel Ahmed SoomroNoreena MemonChangying Ji
Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil erosion. However, it has become apparent that the incorporated straw can significantly alter soil shear properties, which can dramatically affect energy inputs for tilling and other soil management practices. In this study, laboratory-remolded wheat straw-soil samples were compared with field-collected straw-soil samples; we found high correlations for the cohesion (R2=0.9084) and internal friction angle (R2=0.9548) properties of the samples. Shear tests on rice and wheat straw with different moisture content levels clearly demonstrated the relatively higher shear strength of wheat straw compared to rice straw. The cohesion of remolded rice and wheat straw-soil samples exhibited an increasing linear trend with an increase in densities, whereas the internal friction angle data for these samples exhibited a quadratic trend. Overlapping the cohesion curves revealed that the wheat straw-soil and rice straw-soil samples had the same cohesion at a straw density of 0.63%. Similar results were obtained when the internal fraction angle curves overlapped; the resultant point of intersection was observed at a straw density of 0.46%. As a whole, the remolded sample methodology was found suitable to simulate the shear properties of soils sampled directly from fields.