This paper discusses the k-degree averaging discontinuous finite element solution for the initial value problem of ordinary differential equations. When k is even, the averaging numerical flux (the average of left and right limits for the discontinuous finite element at nodes) has the optimal-order ultraconvergence 2k + 2. For nanlinear Hamiltonian systems (e.g., SchrSdinger equation and Kepler system) with momentum conservation, the discontinuous finite element methods preserve momentum at nodes. These properties are confirmed by numerical experiments.
Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method.In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.
This paper is concerned with the finite element method for nonlinear Hamiltonian systems from three aspects: conservation of energy, symplicity, and the global error. To study the symplecticity of the finite element methods, we use an analytical method rather than the commonly used algebraic method. We prove optimal order of convergence at the nodes tn for mid-long time and demonstrate the symplecticity of high accuracy. The proofs depend strongly on superconvergence analysis. Numerical experiments show that the proposed method can preserve the energy very well and also can make the global trajectory error small for long time.
Based on an asymptotic expansion of finite element, an extrapolation cascadic multigrid method (EXCMG) is proposed, in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid. In the case of multiple grids, both superconvergence error in H^1-norm and the optimal error in l2-norm are analyzed. The numerical experiment shows the advantage of EXCMG in comparison with CMG.