In this paper we study the regularity theory of the solutions of a class of degenerate elliptic equations in divergence form. By introducing a proper distance and applying the compactness method we establish the HSlder type estimates for the weak solutions.
For the fully nonlinear uniformly elliptic equation F(D2u) = 0, it is well known that the viscosity solutions are C2,α if the nonlinear operator F is convex (or concave). In this paper, we study the classical solutions for the fully nonlinear elliptic equation where the nonlinear operator F is locally C1,β a.e. for any 0 < β < 1. We will prove that the classical solutions u are C2,α. Moreover, the C2,α norm of u depends on n,F and the continuous modulus of D2u.
CAO Yi1, LI DongSheng1 & WANG LiHe1,2 1College of Science, Xi’an Jiaotong University, Xi’an 710049, China