Objective Obesity is becoming a worldwide health problem. The genome wide association (GWA) study particularly for body mass index (BMI) has not been successfully conducted in the Chinese. In order to identify novel genes for BMI variation in the Chinese, an initial GWA study and a follow up replication study were performed. Methods Affymetrix 500K SNPs were genotyped for initial GWA of 597 Northern Chinese. After quality control, 281 533 SNPs were included in the association analysis. Three SNPs were genotyped in a Southern Chinese replication sample containing 2 955 Chinese Han subjects. Association analyses were performed by Plink software. Results Eight SNPs were significantly associated with BMI variation after false discovery rate (FDR) correction (P=5.45×10-7-7.26×106, FDR q=0.033-0.048). Two adjacent SNPs (rs4432245 & rs711906) in the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) gene were significantly associated with BMI (P=6.38×10-6& 4.39×106, FDR q=0.048). In the follow-up replication study, we confirmed the associations between BMI and rs4432245, rs711906 in the EIF2AKE gene (P=0.03 & 0.01, respectively). Conclusion Our study suggests novel mechanisms for BMI, where EIF2AK4 has exerted a profound effect on the synthesis and storage of triglycerides and may impact on overall energy homeostasis associated with obesity. The minor allele frequencies for the two SNPs in the EIF2AK4 gene have marked ethnic differences between Caucasians and the Chinese. The association of the EIF2AK4 gene with BMI is suggested to be 'ethnic specific' in the Chinese.
YANG FangCHEN Xiang DingTAN Li JunSHEN JieLI Ding YouZHANG FangSHA Bao YongDENG Hong Wen
Osteoporosis is a highly heritable common bone disease leading to fractures that severely impair the life quality of patients.Wrist fractures caused by osteoporosis are largely due to the scarcity of wrist bone mass.Here we report the results of a genome-wide association study (GWAS) of wrist bone mineral density (BMD).We examined ~500000 SNP markers in 1000 unrelated homogeneous Caucasian subjects and found a novel allelic association with wrist BMD at rs11023787 in the SOX6 (SRY (sex determining region Y)-box 6) gene (P=9.00×10-5).Subjects carrying the C allele of rs11023787 in SOX6 had significantly higher mean wrist BMD values than those with the T allele (0.485:0.462 g cm-2 for C allele vs.T allele carriers).For validation,we performed SOX6 association for BMD in an independent Chinese sample and found that SNP rs11023787 was significantly associated with wrist BMD in the Chinese sample (P=6.41×10-3).Meta-analyses of the GWAS scan and the replication studies yielded P-values of 5.20×10-6 for rs11023787.Results of this study,together with the functional relevance of SOX6 in cartilage formation,support the SOX6 gene as an important gene for BMD variation.
Copy number variation (CNV) is a type of genetic variation which may have important roles in phenotypic variability and disease susceptibility. To hunt for genetic variants underlying human height variation, we performed a genome wide CNV association study for human height in 618 Chinese unrelated subjects using Affymetrix 500K array set. After adjusting for age and sex, we found that four CNVs at 6p21.3, 8p23.3-23.2, 9p23 and 16p12.1 were associated with human height (with borderline significant p value: 0.013, 0.011, 0.024, 0.049; respectively). However, after multiple tests correction, none of them was associated with human height. We observed that the gain of copy number (more than 2 copies) at 8p23.3-23.2 was associated with lower height (normal copy number vs. gain of copy number: 161.2 cm vs. 153.7 cm, p = 0.011), which accounted for 0.9% of height variation. Loss of copy number (less than 2 copies) at 6p21.3 was associated with 0.8% lower height (loss of copy number vs. normal copy number: 154.5 cm vs. 161.1 cm, p = 0.013). Since no important genes influencing height located in CNVs at loci of 8p23.3-23.2 and 6p21.3, the two CNVs may cause the structural rear- rangements of neighbored important candidate genes, thus regulates the variation of height. Our results expand our knowledge of the genetic factors underlying height variation and the biological regulation of human height.