In this article, the population-size-dependent bisexual Galton-Watson processes are considered. Under some suitable conditions on the mating functions and the offspring distribution, existence of the limit of mean growth rate per mating unit is proved. And based on the limit, a criterion to identify whether the process admits ultimate extinct with probability one is obtained.
Consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative Levy process. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. In this paper, we show that a threshold strategy (also called refraction strategy) forms an optimal strategy under the condition that the Levy measure has a completely monotone density.