Although differences in food-hoarding tactics both reflect a behavioral response to cache pilferage among rodent species and may help explain their coexistence,differentiation in cache pilfering abilities among sympatric rodents with different hoarding strategies is seldom addressed.We carried out semi-natural enclosure experiments to investigate seed hoarding tactics among three sympatric rodent species(Tamias sibiricus,Apodemus peninsulae and Clethrionomys rufocanus)and the relationship of their pilfering abilities at the inter-and intraspecific levels.Our results showed that T.sibiricus exhibited a relatively stronger pilfering ability than A.peninsulae and C.rufocanus,as indicated by its higher recovery rate of artificial caches.Meanwhile A.peninsulae showed a medium pilfering ability and C.rufocanus displayed the lowest ability.We also noted that both cache size and cache depth significantly affected cache recovery in all three species.T.sibiricus scatter-hoarded more seeds than it larder-hoarded,A.peninsulae larder-hoarded more than scatter-hoarded,and C.rufocanus acted as a pure larder-hoarder.In T.sibiricus,individuals with lower pilfering abilities tended to scatter hoard seeds,indicating an intraspecific variation in hoarding propensity.Collectively,these results indicated that sympatric rodent species seem to deploy different food hoarding tactics that allow their coexistence in the temperate forests,suggesting a strong connection between hoarding strategy and pilfering ability.
Although differences in food-hoarding tactics both reflect a behavioral response to cache pilferage among rodent species and may help explain their coexistence, differentiation in cache pilfering abilities among sympatric rodents with different hoarding strategies is seldom addressed. We carried out semi-natural enclosure experiments to investigate seed hoarding tactics among three sympatric rodent species (Tamias sibiricus, Apodemus peninsulae and Clethrionomys rufocanus) and the relationship of their pilfering abilities at the inter- and intraspecific levels. Our results showed that T. sibiricus exhibited a relatively stronger pilfering ability than A. peninsulae and C. rufocanus, as indicated by its higher recovery rate of artificial caches. Meanwhile A. peninsulae showed a medium pilfering ability and C. rufocanus displayed the lowest ability. We also noted that both cache size and cache depth significantly affected cache recovery in all three species. T. sibiricus scatter-hoarded more seeds than it larder-hoarded, A. peninsulae larder-hoarded more than scatter-hoarded, and C. rufocanus acted as a pure larder-hoarder. In T. sibiricus, individuals with lower pilfering abilities tended to scatter hoard seeds, indicating an intraspecific variation in hoarding propensity. Collectively, these results indicated that sympatric rodent species seem to deploy different food hoarding tactics that allow their coexistence in the temperate forests, suggesting a strong connection between hoarding strategy and pilfering ability.
Fitness of parents and offspring is affected by offspring size.In oaks(Quercus spp.),acorns vary considerably in size across,and within,species.Seed size influences dispersal and establishment of oaks,but it is not known whether size imparts tolerance to seed predators.Here,we examine the relative extent to which cotyledon size serves as both a means for sustaining partial consumption and energy reserves for developing seedlings during early stages of establishment.Acorns of 6 oak species were damaged to simulate acorn predation by vertebrate and invertebrate seed predators.Seedling germination/emergence and growth rates were used to assess seedling performance.We predicted that if cotyledons are important for dispersal,acorns should show tolerance to partial seed consumption.Alternatively,if the cotyledon functions primarily as an energy reserve,damage should significantly influence seedling performance.Acorns of each species germinated and produced seedlings even after removing>50%of the cotyledon.Seed mass explained only some of the variation in performance.Within species,larger acorns performed better than smaller acorns when damaged.Undamaged acorns performed as well or better than damaged acorns.There was no pattern among individual species with increasing amounts of damage.In some species,simulated invertebrate damage resulted in the poorest performance,suggesting alternative strategies of oaks to sustain damage.Large cotyledons in acorns may be important for attracting seed dispersers and sustaining partial damage,while also providing energy to young seedlings.Success of oak establishment may follow from the resilience of acorns to sustain damage at an early stage.
Andrew W.BARTLOWSalvatore JAGOSTARachel CURTISXianfeng YIMichael ASTEELE