基于1983—2011年月总降水量、环流和海温的再分析资料,给出了20世纪90年代末东亚夏季降水的年代际调整的区域特征,及其对应的大气环流内部过程和可能的海温外强迫的年代际变化.研究结果表明,在20世纪90年代末期东亚北部夏季降水比东亚南部夏季降水由湿向干的表现更为明显,东亚南部地区夏季降水则是在20世纪90年代初和21世纪初发生年代际的转折.此外,东亚地区夏季的500 h Pa高度场、850 h Pa风场、U200风场、水汽输送场和东亚太平洋遥相关型指数和东亚夏季风指数等在20世纪90年代末期也表现出明显的年代际变化特征.进而从大气内部过程的角度验证了20世纪90年代末东亚夏季降水发生的年代际调整.与此同时,北太平洋和西太平洋海表温度表现出由偏低向偏高的转变,这可能是导致20世纪90年代末期东亚夏季气候年代际变化的重要外部成因之一.
In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and watervapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA- Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is variable slightly, generally as a constant
A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971-2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). Using this network, we predict the extreme rainfall for several cases without delay and with n-day delay (1 ≤ n ≤ 10). The prediction accuracy can reach 58% without delay, 21% with 1-day delay, and 12% with n-day delay (2 ≤ n ≤ 10). The results reveal that the prediction accuracy is low in years of a weak east Asia summer monsoon (EASM) or 1 year later and high in years of a strong EASM or 1 year later. Furthermore, the prediction accuracy is higher due to the many more links that represent correlations between different grid points and a higher extreme rainfall rate during strong EASM years.
An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed.
WANG Xiao-JuanGONG Zhi-QiangREN Fu-MinFENG Guo-Lin