A topological dynamical system is n-sensitive,if there is a positive constant such that in each non-empty open subset there are n distinct points whose iterates will be apart from the constant at least for a same moment.The properties of n-sensitivity in minimal systems are investigated.It turns out that a minimal system is n-sensitive if and only if the n-th regionally proximal relation Q_n contains a point whose coordinates are pairwise distinct.Moreover,the structure of a minimal system which is n-sensitive but not(n+1)-sensitive(n≥2)is determined.
We will introduce a type of Fredholm operators which are shown to have a certain con- tinuity in weak topologies.From this,we will prove that the fundamental matrix solutions of k-th, k≥2,order linear systems of ordinary differential equations are continuous in coefficient matrixes with weak topologies.Consequently,Floquet multipliers and Lyapunov exponents for periodic systems are continuous in weak topologies.Moreover,for the scalar Hill’s equations,Sturm-Liouville eigenvalues, periodic and anti-periodic eigenvalues,and rotation numbers are all continuous in potentials with weak topologies.These results will lead to many interesting variational problems.
ZHANG MeiRong Department of Mathematical Sciences,Zhou Pei-Yuan Center for Applied Mathematics,Tsinghua University,Beijing 100084,China
In this paper we study important quantities defined from solutions of first order linear systems of ordinary differential equations. It will be proved that many quantities, such as solutions, eigenvalues of one-dimensional Dirac operators, Lyapunov exponents and rotation numbers, depend on the coefficients in a very strong way. That is, they are not only continuous in coefficients with respect to the usual L^p topologies, but also with respect to the weak topologies of the Lp spaces. The continuity results of this paper are a basis to study these quantities in a quantitative way.
In this paper, a result on the persistence of lower dimensional invariant tori in Cd reversible systems is obtained under some conditions. The theorem is proved for any d which is larger than some constants.
In this paper we will study eigenvalues of measure differential equations which are motivated by physical problems when physical quantities are not absolutely continuous.By taking Neumann eigenvalues of measure differential equations as an example,we will show how the extremal problems can be completely solved by exploiting the continuity results of eigenvalues in weak* topology of measures and the Lagrange multiplier rule for nonsmooth functionals.These results can give another explanation for extremal eigenvalues of SturmLiouville operators with integrable potentials.
ZHANG MeiRong 1,2 1 Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China