A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.
Yan YanGuang-hao ShangLi-ping ZhangShao-ying LiHan-jie Guo
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.
Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed.