在循证医学时代下,依托规范的技术方法和标准化的操作规程发掘中医药独特优势,是实现中医药现代化、国际化发展并惠泽人类的必由之路。中医理论、人用经验和研究证据三结合证据体系的提出标志着中医药特色评价体系思维方法取得了重要进步,经过恰当方法整合后的多元证据体是中医药临床指南推荐意见和循证卫生决策的有力支撑。本文基于当前国际证据合成与分级方法学前沿进展,初步提出中医药多元证据整合的方法学框架——MERGE(Merge Evidence-based Research and artificial intelliGence to support smart dEcision)框架,以期为中医药循证医学方法学体系的完善和发展提供借鉴和参考。
The Coordinate Descent Method for K-means(CDKM)is an improved algorithm of K-means.It identifies better locally optimal solutions than the original K-means algorithm.That is,it achieves solutions that yield smaller objective function values than the K-means algorithm.However,CDKM is sensitive to initialization,which makes the K-means objective function values not small enough.Since selecting suitable initial centers is not always possible,this paper proposes a novel algorithm by modifying the process of CDKM.The proposed algorithm first obtains the partition matrix by CDKM and then optimizes the partition matrix by designing the split-merge criterion to reduce the objective function value further.The split-merge criterion can minimize the objective function value as much as possible while ensuring that the number of clusters remains unchanged.The algorithm avoids the distance calculation in the traditional K-means algorithm because all the operations are completed only using the partition matrix.Experiments on ten UCI datasets show that the solution accuracy of the proposed algorithm,measured by the E value,is improved by 11.29%compared with CDKM and retains its efficiency advantage for the high dimensional datasets.The proposed algorithm can find a better locally optimal solution in comparison to other tested K-means improved algorithms in less run time.
目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,所有患者均接受常规MRI扫描及3D MERGE、3D SPACE STIR序列扫描,对比3D MERGE、3D SPACE STIR序列测量神经根直径的一致性,评价两种序列的图像质量参数[信噪比(SNR)、对比噪声比(CNR)]、图像清晰度评分。结果:3D MERGE和3D SPACE STIR序列测量的L3~S1神经根直径比较差异无统计学意义(P>0.05),且两组序列测量的L3、L4、L5和S1直径均显示出较高相关性(r=0.957,0.986,0.975,0.972,P<0.05);3D MERGE序列的SNR及CNR均高于3D SPACE STIR序列,神经根显示分级、图像清晰度评分优于3D SPACE STIR序列,差异有统计学意义(P<0.05)。结论:3D MERGE、3D SPACE STIR序列在LDH神经根直径测量中具有极高一致性,3D MERGE序列较3D SPACE STIR序列能够更清晰显示神经跟的解剖形态,图像质量更好。