A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
Chinese language education exists in both Malaysia and Indonesia. The commonalities and individualities of the national conditions of both countries have an impact on their Chinese language education. The official languages scripts, and major beliefs of the two countries are quite similar, and under their influence, local Chinese have special expectations for Chinese language education. Compared to Indonesia, Malaysian Chinese have a larger proportion of the population and a tendency towards marriage, which to some extent is more conducive to the Chinese language education of local Chinese. Both countries’ national conditions and personalities have unfavorable factors for local Chinese language education.
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
Background: Physical functional decline is common among elderly individuals with mental disorders, worsening their symptoms. Physiotherapy interventions have shown some evidence in improving physical function and mental health outcomes in this population. This study aimed to assess the impact of physiotherapy interventions on the elderly with mental health conditions at Chainama Hills College Hospital in Zambia. Methods: A pre-post single sample design was used to track patient progress over six weeks, with 10 physiotherapy sessions. The study population (N = 30) comprised of all elderly individuals with mental health conditions, encompassing both men and women, who were hospitalized during the research period. The Katz Index of Activities of Daily Living and the six-minute walk test were evaluated before and after the intervention. The IBM SPSS version 26 was used to analyze data and results were presented as mean ± SD with a 95% confidence interval. The variables were described in terms of their mean, SD, and range. A significance level of 0.05 was used for a paired T-test to detect changes and multiple logistic regression was used to identify factors associated with mental health. Results: Following the intervention, the percentage of participants achieving full function and independence increased significantly to 96.7% from the initial 73.3%, supported by a 95% CI = [0.82 - 0.99]. There was also a notable decrease in the proportion of individuals experiencing moderate impairment, dropping from 26.7% to just 3.3%, with a corresponding 95% CI = [0.00 - 0.17]. Conclusion: The findings derived from this study illustrate an enhancement in the aspects of participants’ overall health and functional condition, including blood pressure, heart rate, and respiratory rate. Consequently, physiotherapy exercises can be employed as a tactic to ameliorate the functional status and physical well-being of older individuals afflicted with mental disorders in Zambia.
Bibi Mwanatambwe PhiriMartha Banda ChalweMargaret MweshiLoveness Anila Nkhata
The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis lea
Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes equation and the equation of vorticity transport. It has been shown first that a contribution of fluid molecules crossing over a conceptual surface moving with fluid velocity due to their fluctuating motion is essentially important to understanding transport phenomena of momentum and vorticity. A notion of surface layers, which are thin layers at both sides of an interface, has been introduced next to elucidate the transporting mechanism of momentum and vorticity from one phase to the other at an interface through which no fluid molecules are crossing over. A fact that a size of δV, in which reliable values of density, momentum, and velocity of fluid are respectively defined as a volume-averaged mass of fluid molecules, a volume-averaged momentum of fluid molecules and a mass-averaged velocity of fluid molecules, is not infinitesimal but finite has been one of the key factors leading to the boundary conditions for vorticity at an interface between two fluids. The most distinguished characteristics of the boundary conditions derived here are the zero-value conditions for a normal component of momentum flux and tangential components of vorticity flux, at an interface.