Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glycine concentration(0−2 mol/L)on corrosion current density,corrosion potential and cyclic voltammograms were investigated using chalcopyrite concentrate−carbon paste electrodes.Results showed that an increase in the glycine concentration from 0 to 2 mol/L led to an increased oxidation peak current density.Under the same conditions,corrosion current density was found to change from approximately 28 to 89μA/cm2,whereas corrosion potential was decreased from−80 to−130 mV.Elevated temperatures enhanced the measured current densities up to 60℃;however,above this level,current density was observed to decrease.A similar current density behavior was determined with pH.A pH change from 9 to 10.5 resulted in an increase in current density and pH higher than 10.5 gave rise to a reduced current density.In addition,the thermodynamic stability of copper and iron oxides was found to increase at higher temperatures.
Maryam KHEZRIBahram REZAIAli Akbar ABDOLLAHZADEHBenjamin PWILSONMehdi MOLAEINASABMari LUNDSTRÖM